
“Amusement is one of the
fields of applied math.”

—William F. White, 
A Scrapbook of 

Elementary Mathematics

My “Mathemati-
cal Games” col-
umn began in

the December 1956 issue of
Scientific American with an
article on hexaflexagons.
These curious structures, cre-
ated by folding an ordinary
strip of paper into a hexagon
and then gluing the ends to-
gether, could be turned inside
out repeatedly, revealing one
or more hidden faces. The
structures were invented in
1939 by a group of Princeton
University graduate students.
Hexaflexagons are fun to
play with, but more impor-
tant, they show the link be-
tween recreational puzzles
and “serious” mathematics:
one of their inventors was Richard Feyn-
man, who went on to become one of the
most famous theoretical physicists of
the century.

At the time I started my column, only
a few books on recreational mathemat-
ics were in print. The classic of the
genre—Mathematical Recreations and
Essays, written by the eminent English
mathematician W. W. Rouse Ball in
1892—was available in a version up-
dated by another legendary figure, the
Canadian geometer H.S.M. Coxeter.
Dover Publications had put out a trans-

lation from the French of La Mathéma-
tique des Jeux (Mathematical Recrea-
tions), by Belgian number theorist Mau-
rice Kraitchik. But aside from a few other
puzzle collections, that was about it.

Since then, there has been a remark-
able explosion of books on the subject,
many written by distinguished mathe-
maticians. The authors include Ian Stew-
art, who now writes Scientific Ameri-
can’s “Mathematical Recreations” col-
umn; John H. Conway of Princeton
University; Richard K. Guy of the Uni-
versity of Calgary; and Elwyn R. Berle-

kamp of the University of
California at Berkeley. Arti-
cles on recreational mathe-
matics also appear with in-
creasing frequency in mathe-
matical periodicals. The
quarterly Journal of Recrea-
tional Mathematics began
publication in 1968.

The line between entertain-
ing math and serious math is
a blurry one. Many profes-
sional mathematicians regard
their work as a form of play,
in the same way professional
golfers or basketball stars
might. In general, math is
considered recreational if it
has a playful aspect that can
be understood and appreci-
ated by nonmathematicians.
Recreational math includes
elementary problems with
elegant, and at times surpris-
ing, solutions. It also encom-
passes mind-bending para-
doxes, ingenious games, be-
wildering magic tricks and
topological curiosities such

as Möbius bands and Klein bottles. In
fact, almost every branch of mathemat-
ics simpler than calculus has areas that
can be considered recreational. (Some
amusing examples are shown on the
opposite page.)

Ticktacktoe in the Classroom

The monthly magazine published by
the National Council of Teachers

of Mathematics, Mathematics Teacher,
often carries articles on recreational top-
ics. Most teachers, however, continue to
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A Quarter-Century 
of Recreational Mathematics

The author of Scientific American’s column 
“Mathematical Games” from 1956 to 1981 recounts 
25 years of amusing puzzles and serious discoveries

by Martin Gardner

MARTIN GARDNER continues to tackle mathematical puz-
zles at his home in Hendersonville, N.C. The 83-year-old writ-
er poses next to a Klein bottle, an object that has just one sur-
face: the bottle’s inside and outside connect seamlessly.
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Printed above are the first three verses of Genesis in the King
James Bible. Select any of the 10 words in the first verse: “In the

beginning God created the heaven and the earth.” Count the num-
ber of letters in the chosen word and call this number x. Then go to
the word that is x words ahead. (For example, if you picked “in,” go to
“beginning.”) Now count the number of letters in this word—call it
n—then jump ahead another n words. Continue in this manner until
your chain of words enters the third verse of Genesis.

On what word does your count end? Is the answer happenstance
or part of a divine plan?

Amagician arranges a deck of cards so that the black and 
red cards alternate. She cuts the deck about in half, making sure

that the bottom cards of each half are not the same color. Then she
allows you to riffle-shuffle the two halves together, as thoroughly or
carelessly as you please. When you’re done, she picks the first two
cards from the top of the deck. They are a black card and a red card
(not necessarily in that order). The next two are also a black card and
a red card. In fact, every succeeding pair of cards will include one of
each color. How does she do it? Why doesn’t shuffling the deck pro-
duce a random sequence?

The matrix of numbers above is a curious type of magic square.
Circle any number in the matrix, then cross out all the numbers

in the same column and row. Next, circle any number that has not
been crossed out and again cross out the row and column containing
that number. Continue in this way until you have circled six numbers.

Clearly, each number has been randomly selected. But no matter
which numbers you pick, they always add up to the same sum. What
is this sum? And, more important, why does this trick always work?

Mr. Jones, a cardsharp, puts three cards face down on a table.
One of the cards is an ace; the other two are face cards. You

place a finger on one of the cards, betting that this card is the ace.
The probability that you’ve picked the ace is clearly 1/3. Jones now se-
cretly peeks at each card. Because there is only one ace among the
three cards, at least one of the cards you didn’t choose must be a face
card. Jones turns over this card and shows it to you. What is the prob-
ability that your finger is now on the ace?

Four Puzzles from Martin Gardner
(The answers are on page 75.)
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ignore such material. For 40 years I
have done my best to convince educa-
tors that recreational math should be
incorporated into the standard curricu-
lum. It should be regularly introduced
as a way to interest young students in
the wonders of mathematics. So far,
though, movement in this direction has
been glacial.

I have often told a story from my own
high school years that illustrates the di-
lemma. One day during math study pe-
riod, after I’d finished my regular as-
signment, I took out a fresh sheet of pa-
per and tried to solve a problem that
had intrigued me: whether the first play-
er in a game of ticktacktoe can always
win, given the right strategy. When my
teacher saw me scribbling, she snatched
the sheet away from me and said, “Mr.
Gardner, when you’re in my class I ex-
pect you to work on mathematics and
nothing else.”

The ticktacktoe problem would make
a wonderful classroom exercise. It is a
superb way to introduce students to
combinatorial mathematics, game theo-
ry, symmetry and probability. More-
over, the game is part of every student’s
experience: Who has not, as a child,
played ticktacktoe? Yet I know few
mathematics teachers who have includ-
ed such games in their lessons.

According to the 1997 yearbook of
the mathematics teachers’ council, the
latest trend in math education is called
“the new new math” to distinguish it
from “the new math,” which flopped
so disastrously several decades ago. The
newest teaching system involves divid-
ing classes into small groups of students
and instructing the groups to solve prob-
lems through cooperative reasoning.

“Interactive learning,” as it is called, is
substituted for lecturing. Although there
are some positive aspects of the new
new math, I was struck by the fact that
the yearbook had nothing to say about
the value of recreational mathematics,
which lends itself so well to cooperative
problem solving.

Let me propose to teachers the follow-
ing experiment. Ask each group of stu-
dents to think of any three-digit num-
ber—let’s call it ABC. Then ask the stu-
dents to enter the sequence of digits
twice into their calculators, forming the
number ABCABC. For example, if the
students thought of the number 237,
they’d punch in the number 237,237.
Tell the students that you have the psy-
chic power to predict that if they divide
ABCABC by 13 there will be no remain-
der. This will prove to be true. Now ask
them to divide the result by 11. Again,
there will be no remainder. Finally, ask
them to divide by 7. Lo and behold, the
original number ABC is now in the cal-
culator’s readout. The secret to the trick
is simple: ABCABC = ABC × 1,001 =
ABC × 7 × 11 × 13. (Like every other
integer, 1,001 can be factored into a
unique set of prime numbers.) I know of
no better introduction to number theory
and the properties of primes than ask-
ing students to explain why this trick
always works.

Polyominoes and Penrose Tiles

One of the great joys of writing the
Scientific American column over

25 years was getting to know so many
authentic mathematicians. I myself am
little more than a journalist who loves
mathematics and can write about it glib-

ly. I took no math courses in college. My
columns grew increasingly sophisticat-
ed as I learned more, but the key to the
column’s popularity was the fascinating
material I was able to coax from some
of the world’s best mathematicians.

Solomon W. Golomb of the Universi-
ty of Southern California was one of
the first to supply grist for the column.
In the May 1957 issue I introduced his
studies of polyominoes, shapes formed
by joining identical squares along their
edges. The domino—created from two
such squares—can take only one shape,
but the tromino, tetromino and pento-
mino can assume a variety of forms: Ls,
Ts, squares and so forth. One of Gol-
omb’s early problems was to determine
whether a specified set of polyominoes,
snugly fitted together, could cover a
checkerboard without missing any
squares. The study of polyominoes
soon evolved into a flourishing branch
of recreational mathematics. Arthur C.
Clarke, the science-fiction author, con-
fessed that he had become a “pentomi-
no addict” after he started playing with
the deceptively simple figures.

Golomb also drew my attention to a
class of figures he called “rep-tiles”—

identical polygons that fit together to
form larger replicas of themselves. One
of them is the sphinx, an irregular pen-
tagon whose shape is somewhat similar
to that of the ancient Egyptian monu-
ment. When four identical sphinxes are
joined in the right manner, they form a
larger sphinx with the same shape as its
components. The pattern of rep-tiles
can expand infinitely: they tile the plane
by making larger and larger replicas.

The late Piet Hein, Denmark’s illus-
trious inventor and poet, became a
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LOW-ORDER REP-TILES fit together to make larger replicas
of themselves. The isosceles right triangle (a) is a rep-2 figure:
two such triangles form a larger triangle with the same shape. A
rep-3 triangle (b) has angles of 30, 60 and 90 degrees. Other rep-
tiles include a rep-4 quadrilateral (c) and a rep-4 hexagon (d).
The sphinx (e) is the only known rep-4 pentagon.
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good friend through his contributions
to “Mathematical Games.” In the July
1957 issue, I wrote about a topological
game he invented called Hex, which is
played on a diamond-shaped board
made of hexagons. Players place their
markers on the hexagons and try to be
the first to complete an unbroken chain
from one side of the board to the other.
The game has often been called John be-
cause it can be played on the hexagonal
tiles of a bathroom floor. 

Hein also invented the Soma cube,
which was the subject of several columns
(September 1958, July 1969 and Sep-
tember 1972). The Soma cube consists
of seven different polycubes, the three-
dimensional analogues of polyominoes.
They are created by joining identical
cubes at their faces. The polycubes can
be fitted together to form the Soma
cube—in 240 ways, no less—as well as
a whole panoply of Soma shapes: the
pyramid, the bathtub, the dog and so on.

In 1970 the mathematician John Con-
way—one of the world’s undisputed ge-
niuses—came to see me and asked if I
had a board for the ancient Oriental
game of go. I did. Conway then dem-
onstrated his now famous simulation
game called Life. He placed several
counters on the board’s grid, then re-
moved or added new counters accord-
ing to three simple rules: each counter
with two or three neighboring counters
is allowed to remain; each counter with
one or no neighbors, or four or more
neighbors, is removed; and a new coun-
ter is added to each empty space adja-

cent to exactly three counters. By ap-
plying these rules repeatedly, an aston-
ishing variety of forms can be created,
including some that move across the
board like insects. I described Life in the
October 1970 column, and it became an
instant hit among computer buffs. For
many weeks afterward, business firms
and research laboratories were almost
shut down while Life enthusiasts exper-
imented with Life forms on their com-
puter screens.

Conway later collaborated with fel-
low mathematicians Richard Guy and
Elwyn Berlekamp on what I consider
the greatest contribution to recreational
mathematics in this century, a two-vol-
ume work called Winning Ways (1982).
One of its hundreds of gems is a two-
person game called Phutball, which can
also be played on a go board. The Phut-
ball is positioned at the center of the
board, and the players take turns plac-
ing counters on the intersections of the
grid lines. Players can move the Phutball
by jumping it over the counters, which
are removed from the board after they
have been leapfrogged. The object of
the game is to get the Phutball past the
opposing side’s goal line by building a
chain of counters across the board.
What makes the game distinctive is that,
unlike checkers, chess, go or Hex, Phut-
ball does not assign different game piec-
es to each side: the players use the same
counters to build their chains. Conse-
quently, any move made by one Phut-
ball player can also be made by his or
her opponent.
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SOMA PIECES are irregular shapes formed by joining unit cubes at their faces (above).
The seven pieces can be arranged in 240 ways to build the 3-by-3-by-3 Soma cube. The
pieces can also be assembled to form all but one of the structures pictured at the right.
Can you determine which structure is impossible to build? The answer is on page 75.
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Other mathematicians who contrib-
uted ideas for the column include Frank
Harary, now at New Mexico State Uni-
versity, who generalized the game of
ticktacktoe. In Harary’s version of the
game, presented in the April 1979 is-
sue, the goal was not to form a straight
line of Xs or Os; instead players tried to
be the first to arrange their Xs or Os in
a specified polyomino, such as an L or
a square. Ronald L. Rivest of the Mas-
sachusetts Institute of Technology al-
lowed me to be the first to reveal—in
the August 1977 column—the “public-
key” cipher system that he co-invented.
It was the first of a series of ciphers that
revolutionized the field of cryptology. I
also had the pleasure of presenting the

mathematical art of Maurits C. Escher,
which appeared on the cover of the
April 1961 issue of Scientific American,
as well as the nonperiodic tiling discov-
ered by Roger Penrose, the British math-
ematical physicist famous for his work
on relativity and black holes.

Penrose tiles are a marvelous exam-
ple of how a discovery made solely for
the fun of it can turn out to have an un-
expected practical use. Penrose devised
two kinds of shapes, “kites” and
“darts,” that cover the plane only in a
nonperiodic way: no fundamental part
of the pattern repeats itself. I explained
the significance of the discovery in the
January 1977 issue, which featured a
pattern of Penrose tiles on its cover. A

few years later a 3-D form of Penrose
tiling became the basis for constructing
a previously unknown type of molecu-
lar structure called a quasicrystal. Since
then, physicists have written hundreds
of research papers on quasicrystals and
their unique thermal and vibrational
properties. Although Penrose’s idea
started as a strictly recreational pursuit,
it paved the way for an entirely new
branch of solid-state physics.

Leonardo’s Flush Toilet

The two columns that generated the
greatest number of letters were my

April Fools’ Day column and the one
on Newcomb’s paradox. The hoax col-
umn, which appeared in the April 1975
issue, purported to cover great break-
throughs in science and math. The start-
ling discoveries included a refutation of
relativity theory and the disclosure that
Leonardo da Vinci had invented the flush
toilet. The column also announced that
the opening chess move of pawn to
king’s rook 4 was a certain game win-
ner and that e raised to the power of 
π × √163 was exactly equal to the inte-
ger 262,537,412,640,768,744. To my
amazement, thousands of readers failed
to recognize the column as a joke. Ac-
companying the text was a complicated
map that I said required five colors to
ensure that no two neighboring regions
were colored the same. Hundreds of
readers sent me copies of the map col-
ored with only four colors, thus up-
holding the four-color theorem. Many
readers said the task had taken days.

Newcomb’s paradox is named after
physicist William A. Newcomb, who
originated the idea, but it was first de-
scribed in a technical paper by Harvard
University philosopher Robert Nozick.
The paradox involves two closed box-
es, A and B. Box A contains $1,000.
Box B contains either nothing or $1
million. You have two choices: take
only Box B or take both boxes. Taking
both obviously seems to be the better
choice, but there is a catch: a superbe-
ing—God, if you like—has the power of
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IN THE GAME OF LIFE, forms evolve by following rules
set by mathematician John H. Conway. If four “organ-
isms” are initially arranged in a square block of cells (a),
the Life form does not change. Three other initial patterns
(b, c and d) evolve into the stable “beehive” form. The fifth
pattern (e) evolves into the oscillating “traffic lights” figure,
which alternates between vertical and horizontal rows.
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knowing in advance how you will
choose. If he predicts that out of
greed you will take both boxes, he
leaves B empty, and you will get
only the $1,000 in A. But if he pre-
dicts you will take only Box B, he
puts $1 million in it. You have watched
this game played many times with oth-
ers, and in every case when the player
chose both boxes, he or she found that
B was empty. And every time a player
chose only Box B, he or she became a
millionaire.

How should you choose? The prag-
matic argument is that because of the
previous games you have witnessed,
you can assume that the superbeing
does indeed have the power to make
accurate predictions. You should there-
fore take only Box B to guarantee that
you will get the $1 million. But wait!
The superbeing makes his prediction
before you play the game and has no
power to alter it. At the moment you
make your choice, Box B is either emp-
ty, or it contains $1 million. If it is emp-
ty, you’ll get nothing if you choose only

Box B. But if you choose both boxes, at
least you’ll get the $1,000 in A. And if
B contains $1 million, you’ll get the mil-
lion plus another thousand. So how can
you lose by choosing both boxes?

Each argument seems unassailable.
Yet both cannot be the best strategy. No-
zick concluded that the paradox, which
belongs to a branch of mathematics
called decision theory, remains unre-

solved. My personal opinion is that the
paradox proves, by leading to a logical
contradiction, the impossibility of a su-
perbeing’s ability to predict decisions. I
wrote about the paradox in the July
1973 column and received so many let-
ters afterward that I packed them into a
carton and personally delivered them to
Nozick. He analyzed the letters in a
guest column in the March 1974 issue.

Magic squares have long been a pop-
ular part of recreational math. What
makes these squares magical is the ar-
rangement of numbers inside them: the
numbers in every column, row and di-
agonal add up to the same sum. The
numbers in the magic square are usual-
ly required to be distinct and run in
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TRAFFIC LIGHTS

PENROSE TILES can be constructed by dividing
a rhombus into a “kite” and a “dart” such that
the ratio of their diagonals is phi (φ), the golden
ratio (above). Arranging five of the darts around
a vertex creates a star. Placing 10 kites around
the star and extending the tiling symmetrically
generate the infinite star pattern (right). Other
tilings around a vertex include the deuce, jack
and queen, which can also generate infinite pat-
terns of kites and darts (below right).
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consecutive order, starting with one.
There exists only one order-3 magic
square, which arranges the digits one
through nine in a three-by-three grid.
(Variations made by rotating or reflect-
ing the square are considered trivial.) In
contrast, there are 880 order-4 magic
squares, and the number of arrange-
ments increases rapidly for higher orders.

Surprisingly, this is not the case with
magic hexagons. In 1963 I received in
the mail an order-3 magic hexagon de-
vised by Clifford W. Adams, a retired
clerk for the Reading Railroad. I sent
the magic hexagon to Charles W. Trigg,
a mathematician at Los Angeles City
College, who proved that this elegant
pattern was the only possible order-3

magic hexagon—and that no magic hex-
agons of any other size are possible!

What if the numbers in a magic square
are not required to run in consecutive
order? If the only requirement is that
the numbers be distinct, a wide variety
of order-3 magic squares can be con-
structed. For example, there is an infin-
ite number of such squares that contain
distinct prime numbers. Can an order-3
magic square be made with nine distinct
square numbers? Two years ago in an
article in Quantum, I offered $100 for
such a pattern. So far no one has come
forward with a “square of squares”—

but no one has proved its impossibility
either. If it exists, its numbers would be
huge, perhaps beyond the reach of to-

day’s fastest supercomputers. Such a
magic square would probably not have
any practical use. Why then are mathe-
maticians trying to find it? Because it
might be there.

The Amazing Dr. Matrix

Every year or so during my tenure at
Scientific American, I would devote

a column to an imaginary interview
with a numerologist I called Dr. Irving
Joshua Matrix (note the “666” provid-
ed by the number of letters in his first,
middle and last names). The good doc-
tor would expound on the unusual prop-
erties of numbers and on bizarre forms
of wordplay. Many readers thought Dr.
Matrix and his beautiful, half-Japanese
daughter, Iva Toshiyori, were real. I re-
call a letter from a puzzled Japanese
reader who told me that Toshiyori was
a most peculiar surname in Japan. I had
taken it from a map of Tokyo. My in-
formant said that in Japanese the word
means “street of old men.”

I regret that I never asked Dr. Matrix
for his opinion on the preposterous
1997 best-seller The Bible Code, which
claims to find predictions of the future
in the arrangement of Hebrew letters in
the Old Testament. The book employs
a cipher system that would have made
Dr. Matrix proud. By selectively apply-
ing this system to certain blocks of text,
inquisitive readers can find hidden pre-
dictions not only in the Old Testament
but also in the New Testament, the Ko-
ran, the Wall Street Journal—and even
in the pages of The Bible Code itself.

The last time I heard from Dr. Matrix,
he was in Hong Kong, investigating the
accidental appearance of π in well-
known works of fiction. He cited, for
example, the following sentence frag-
ment in chapter nine of book two of 
H. G. Wells’s The War of the Worlds:
“For a time I stood regarding. . .” The
letters in the words give π to six digits!
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The Author

MARTIN GARDNER wrote the “Mathematical Games” col-
umn for Scientific American from 1956 to 1981 and continued to
contribute columns on an occasional basis for several years after-
ward. These columns are collected in 15 books, ending with The
Last Recreations (Springer-Verlag, 1997). He is also the author of
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Flight of Peter Fromm, the last a novel. His more than 70 other
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Further Reading

Recreations in the Theory of Numbers. Albert H. Beiler. Dover
Publications, 1964.

Mathematics: Problem Solving through Recreational
Mathematics. Bonnie Averbach and Orin Chein. W. H. Freeman
and Company, 1986.

Mathematical Recreations and Essays. 13th edition. W. W.
Rouse Ball and H.S.M. Coxeter. Dover Publications, 1987.

Penguin Edition of Curious and Interesting Geometry.
David Wells. Penguin, 1991.

Mazes of the Mind. Clifford Pickover. St. Martin’s Press, 1992.

The Vanishing Area Paradox

Consider the figures shown below. Each pattern is made with the same 16
pieces: four large right triangles, four small right triangles, four eight-sided

pieces and four small squares. In the pattern on the left, the pieces fit together
snugly, but the pattern on the right has a square hole in its center! Where did this
extra bit of area come from? And why does it vanish in the pattern on the left?

The secret to this paradox—which I devised for the “Mathematical Games” col-
umn in the May 1961 issue of Scientific American—will be revealed in the Letters
to the Editors section of next month’s issue. Impatient readers can find the an-
swer at www.sciam.com on the World Wide Web. —M.G.
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1. Most people guess that the probability has risen from 1/3 to
1/2. After all, only two cards are face down, and one must be
the ace. Actually, the probability remains 1/3. The probability
that you didn’t pick the ace remains 2/3, but Jones has elimi-
nated some of the uncertainty by showing that one of the
two unpicked cards is not the ace. So there is a 2/3 probability
that the other unpicked card is the ace. If Jones gives you the
option to change your bet to that card, you should take it (un-
less he’s slipping cards up his sleeve, of course).

I introduced this problem in my October 1959 column in a
slightly different form—instead of three cards, the problem
involved three prisoners, one of whom had been pardoned
by the governor. In 1990 Marilyn vos Savant, the author of a
popular column in Parade magazine, presented still another
version of the same problem, involving three doors and a car
behind one of them. She gave the correct answer but re-
ceived thousands of angry letters—many from mathemati-
cians—accusing her of ignorance of probability theory! The
fracas generated a front-page story in the New York Times.

2. The sum is 111. The trick always works because the matrix of
numbers is nothing more than an old-fashioned addition
table (below). The table is generated by two sets of numbers:
(3, 1, 5, 2, 4, 0) and (25, 31, 13, 1, 7, 19). Each number in the ma-
trix is the sum of a pair of numbers in the two sets. When you

choose the six circled
numbers, you are se-
lecting six pairs that
together include all
12 of the generating
numbers. So the sum
of the circled num-
bers is always equal to
the sum of the 12
generating numbers.
These special magic
squares were the sub-
ject of my January
1957 column.

3. Each chain of words ends on “God.” This answer may seem
providential, but it is actually the result of the Kruskal Count, a
mathematical principle first noted by mathematician Martin
Kruskal in the 1970s. When the total number of words in a text
is significantly greater than the number of letters in the long-

est word, it is likely that any two
arbitrarily started word chains
will intersect at a keyword. Af-
ter that point, of course, the
chains become identical. As the
text lengthens, the likelihood
of intersection increases.

I discussed Kruskal’s principle in my February 1978 column.
Mathematician John Allen Paulos applies the principle to word
chains in his upcoming book Once upon a Number.

4. For simplicity’s sake, imagine a deck of only 10 cards, with the
black and red cards alternating like so: BRBRBRBRBR. Cutting
this deck in half will produce two five-card decks: BRBRB and
RBRBR. At the start of the shuffle, the bottom card of one deck
is black, and the bottom card of the other deck is red. If the
red card hits the table first, the bottom cards of both decks
will then be black, so the next card to fall will create a black-
red pair on the table. And if the black card drops first, the bot-
tom cards of both decks will be red, so the next card to fall will
create a red-black pair. After the first two cards drop—no mat-
ter which deck they came from—the situation will be the
same as it was in the beginning: the bottom cards of the
decks will be different colors. The process then repeats, guar-
anteeing a black and red card in each successive pair, even if
some of the cards stick together (below).

This phenomenon is
known as the Gilbreath
principle after its discover-
er, Norman Gilbreath, a
California magician. I first
explained it in my column

in August 1960 and discussed it again in July 1972. Magicians
have invented more than 100 card tricks based on this princi-
ple and its generalizations. —M.G.

Answers to the Four Gardner Puzzles
(The puzzles are on page 69.)

19

7

1

13

31

25

3 1 5 2 4 0

2
3

1
3

10 12 16

815 35 7

9 11 18

13 4 2 19

14 6 1 17

SKYSCRAPER
cannot be built from Soma pieces. 

(The puzzle is on page 71.)

THOROUGH SHUFFLE

OR

STICKY SHUFFLE
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MAGIC HEXAGON
has a unique property: every straight 

row of cells adds up to 38.
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