
 

Physics Notes: Why is the speed of light constant? 

Many novel ideas are found on the Internet. One not so novel notion is that Einstein was wrong 

and that the "lightspeed limit" is really just some international conspiracy of conservative 

"establishment" scientists. Those who make this point neglect the fact, however, that the 

deduction about the speed of light is not a result of some exotic assumptions or blind speculation, 

but a fairly simple consequence of some fundamental assumptions about nature: in other words, 

if you wish to prove that Einstein was wrong, you have to show that either elementary logic is 

incorrect, or that some of our basic assumptions about nature are outright false. 

Here is why. 

Symmetries in Nature 

To begin, here are our assumptions, some of which are generic in nature, while others are 

specifically about electricity and magnetism. First, the generic ones:  

 Space is homogeneous. The equations of physics work the same in 

New York and Los Angeles, on Earth or on Mars, in the Milky 

Way or in the Andromeda Galaxy.  

 Space is isotropic. The equations of physics don't change just 

because you turn around and look in a different direction.  

 Space is symmetric under time translation. The equations of 

physics are the same today as they were yesterday, and as they will 

be tomorrow.  

 Space is symmetric under a "boost". The equations of physics 

work the same in moving coordinate systems: your pocket watch, 

computer, or your body for that matter won't cease to function just 

because you're moving on a train, an airplane, or spacecraft.  

Maxwell's Equations 

The specific assumptions about electricity and magnetism are the culmination of 100 years of 

research and experiment, and were first put into modern form by Maxwell in the 1860s. In plain 

English, this is what they say:  

 The sum total of the electric field around a volume of space is 

proportional to the charges contained within.  

 The sum total of the magnetic field around a volume of space is 

always zero, indicating that there are no magnetic charges 
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(monopoles). (With a bar magnet, the number of field lines "going 

in" and those "going out" cancel each other out exactly, so there is 

no deficit that would show up as a net magnetic charge.)  

 A change over time in the electric field or a movement of electric 

charges (current) induces a proportional vorticity in the magnetic 

field.  

 A change over time in the magnetic field induces a proportional 

vorticity in the electric field, but in the opposite direction.  

These four assumptions can also be stated exactly using mathematical language: specifically, the 

language of vector calculus. But before we continue, it is important to make note of the fact that 

we are done with the assumptions: what follows is rigorous logic. In other words, if one wishes 

to argue that Einstein's conclusion is wrong, one either has to throw logic out the window, or find 

fault in one or more of the assumptions above. 

Empty Space 

To examine the speed of light in free space, we can simplify two of our 

assumptions. In free space there are no charged bodies or particles about, and 

therefore Maxwell's first assumption reads as:  

 The sum total of the electric field around a volume 

of empty space is zero, indicating there is no 

electric charge contained within.  

Similarly, we can drop the bit about electric current from the third assumption:  

 A change over time in the electric field in empty space induces a 

proportional vorticity in the magnetic field.  

Divergence 

Mathematically, the first two assumptions are expressed through the concept of 

divergence. If we imagine the electric field with lines of force, as in a high-

school physics textbook, divergence basically tells us how the lines are 

"spreading out". For the lines to spread out, there must be something, intuitively 

speaking, to "fill the gaps": these things would be particles of charge. But there 

are no such things in empty space, so we can say that the divergence of the 

electric field in empty space is identically zero:  

div E = 0. 

(1) 



The electric field is a vector field: the force it produces has a strength as well as a direction. The 

divergence of a vector field in a given coordinate system is computed through partial derivatives 

of the vector components:  

div v =  
∂vx  +  

∂vy  +  
∂vz 

∂x ∂y ∂z 

So far so good. What we said about the electric field also applies to 

the magnetic field of course:  

div B = 0. 

Vorticity 

What about the vorticity? The vorticity of a vector field is also computed through partial 

derivatives:  
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Unlike the divergence of a vector field, which is a number field (called a scalar field), the 

vorticity of a vector field is another vector field. Intuitively what it means is that a vortex not 

only has strength, but it also has an axis pointing in a specific direction. 

In this mathematical formalism, the second pair of Maxwell's equations in empty space can be 

expressed as:  

curl B = ∂E/∂t, and 

curl E = –∂B/∂t. 

To further simplify calculations, we'll assume that the field depends only on one spatial 

coordinate, say, x. Feynman offers the example of a large (infinite?) charged sheet in the y-z 

plane that moves in a direction perpendicular to its surface as a source of this field. The same 

computation can be performed in the general case, but it is a lot more complicated (and a lot less 

instructive.)   

(2) 
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Solution in One Spatial Dimension 

In this case, the first pair of Maxwell's equations tells us that Ex and Bx must be constant 

functions. 

The second pair of Maxwell's equations reduces to the following simple set:  
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Using the first and the fourth equation, for instance, we can find a solution for Bz (or Ey). 

Consider:  
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This can be rewritten as:  
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Solutions to this equation can be found in the form:  

Bz = f1(t – x) + f2(t + x), 

where f1 and f2 are arbitrary functions. The same solution exists for By, Ey, and Ez. 



If we set f2 = 0, then  

Bz = f1(t – x), 

which is a legitimate solution to Maxwell's equations. What this means is that if the field has a 

certain value at t = 0, x = 0, then it'll have the same value at t = t0, x = t0. Similarly, if we set 

f1 = 0, a field that has a certain value at t = 0, x = 0, then it'll have the same value at t = t0, x = –t0. 

Thus we can say that the electromagnetic field represented by this solution is moving at unit 

velocity along the x axis in either of two directions. 

Choice of Units 

So what's this unit velocity business? Though it was perhaps not evident, in the derivation so far 

we made no attempt to use units of measure that are commonly used in engineering. This is quite 

legitimate, since different units of measure would only introduce constant multipliers that leave 

the structure of the equations unchanged. Had we used SI units throughout, we'd have found the 

final result appear only slightly different:  

Bz = f1(ct – x). 

Our choice of units (or no units, as the case might be) simply meant that we chose to have the 

constant c = 1. Using another set of units, e.g., SI units, we might find that c is equal to 

something else, such as 299,792.5 km/s. 

What is important to realize is that regardless of what units we choose, the observed speed will 

be the same to all observers. Same regardless of where they are. Regardless of when they make 

their measurements. Regardless of how fast they themselves are moving, and in which direction 

they are facing. Whether you move towards a light source or away from it, the speed appears the 

same. 

Special Relativity 

This of course makes no sense in ordinary Euclidean spacetime: when you are running ahead of a 

moving train, it'll appear slower (i.e., take longer to hit you) than when you're running towards it. 

Special relativity is simply the most economical way to solve this dilemma. The idea is to find 

the simplest geometry in which all our initial assumptions can be simultaneously true. 

Why geometry? If you think about it, when you switch from a stationary coordinate system to a 

moving one (i.e., from a coordinate system fixed to the clock of a railway station to one that is 

fixed to the main axis of your steam engine) it's really just a simple coordinate transformation: 

t' = t, x' = x – vt. And herein lies the problem: after this coordinate transformation, in the new 

coordinate system a ray of light no longer satisfies the conditions that we derived previously. If, 

in the old coordinate system, an electromagnetic field had the same value at t = 0, x = 0 and 

t = t0, x = t0, in the new coordinate system, it'll have the same values at t' = 0, x' = 0 and t' = t0, 



x' = t0 – vt0, and this contradicts what we just learned about Maxwell's equations as x' won't be 

equal to t'. 

 

The simple geometry of special relativity, Minkowski spacetime, is built around the assumption 

that the quantity dt
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 remains constant under a "boost", i.e., when you change 
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whether you measure it from a moving or stationary system, which is precisely what we want in 

order to remain consistent with Maxwell's equations.. 

This assumption leads to a new form of coordinate transformation, the Lorentz transformation. 

To see why, compare the values for the station and the train in the diagram above. For the 

station, dt = t0, dx = x0 = vt0 (this, after all, is how we define the train's velocity v) and therefore, 
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And this, of course, is the fabled Lorentz transform. 



Any other approach would either have to use a more complicated geometry (the late 19
th

 century 

concept of "ether" can be viewed as an attempt to do just this) or it would require giving up at 

least some of our initial assumptions. And what's wrong with that, you ask? Well, those 

assumptions are supported by an enormous number of physical observations, not the least of 

which is the observation that this computer in front of me is functioning as expected, even 

though it is moving about at a not altogether inconsiderable velocity as the Earth spins, moves 

around the Sun and, along with the Sun, moves about in the Universe... 
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